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Abstract
We present the first experimental study of the carrier density dependence of the
composite fermion conductivity σ CF

xx at Landau level filling factors ν = 1/2
and 3/2 in high-quality front-gated GaAs/Al0.33Ga0.67As heterostructures.
Extracting α from the power law ln(σ CF

xx ) ∝ ln(ne)
α shows that α ≈ 1. The

measured α ≈ 1 is placed between the predicted value 3/4 in the strong random
magnetic field regime, and 3/2 in the weak random magnetic field regime.
Comparisons between our results and theory are discussed.

1. Introduction

The fractional quantum Hall effect (FQHE) [1] observed in high-quality two-dimensional
(2D) electron systems in the low-temperature, high magnetic field regime arises from strong
electron–electron interactions. These interactions cause the 2D electrons to condense into
a fractional quantum Hall liquid [2]. In the elegant composite fermion (CF) picture [3],
the FQHE can be understood as a manifestation of the integer quantum Hall effect of weakly
interacting composite fermions. It has been shown that at a Landau level filling factor ν = 1/2,
a 2D electron system can be mathematically transformed into a composite fermion system
interacting with a Chern–Simons gauge field [4, 5]. At ν = 1/2, the average of this Chern–
Simons gauge field cancels the external magnetic field Bext so that the effective magnetic field
acting on the CFs is zero. Away from ν = 1/2, the composite fermions experience a net
effective magnetic field Beff = (1 − 2ν)Bext. To date, a wide variety of experimental results
have supported the now well-established composite fermion picture [6–14].

One striking feature of composite fermions is that the resistivity ρxx in the vicinity of
ν = 1/2 exhibits magneto-oscillations which look very similar to the familiar Shubnikov–
de Haas oscillations around B = 0. However, there is one important difference—the
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oscillations in ρxx near ν = 1/2 are much more strongly damped than those at B = 0.
Generally speaking, this is in line with the fact that ρCF

xx at Beff = 0 is orders of magnitude
larger than ρxx (B = 0) [15]. More specifically, recent theoretical studies have shown that the
enhanced damping is due to scattering from fluctuations in the Chern–Simons gauge field as a
result of the inhomogeneous electron charge distribution and resulting non-uniform screening
of the impurity potential [4].

It is generally accepted that it is possible to determine the dominant scattering mechanism
in a two-dimensional electron systems at B = 0 from the carrier density dependence of the
mobility (conductivity) [16]. For example, when µ ∝ n1.5

e then σ ∝ n2.5
e , since σ = neeµ, and

remote ionized impurity scattering dominates. However, no such study has been conducted
for composite fermions at ν = 1/2, where the effective magnetic field for the CFs is also zero.
A study of the carrier density dependence of the conductivity at ν = 1/2 would determine
what limits the CF mobility. To date, existing CF transport measurements have mostly been
undertaken on ungated, high-quality GaAs/AlGaAs heterostructures [6, 9–11]. This paper
presents the first study of the carrier density dependence of the composite fermion conductivity.
In particular we show that the exponent α measured from the power law ln(σ CF

xx ) ∝ ln(ne)
α is

approximately 1 at both ν = 1/2 and 3/2. The measured α ≈ 1 is placed between the predicted
value 3/4 in the strong random magnetic field regime, and 3/2 in the weak random magnetic
field regime. Existing theories [4, 15] underestimate σ CF

xx , although the strong random magnetic
field regime [15] provides a better fit to our results. We suggest that further theoretical studies
are required in order to provide full understanding of our experimental results.

2. Experiment

The high-quality HEMTs used in this work were made from ultra-low-disorder
GaAs/Al0.33Ga0.67As heterojunctions. Sample A, made from wafer T139, has a carrier density
of 9.12 × 1014 m−2 with a mobility µ of 300 m2 V−1 s−1 at Vg = 0 without illumination.
Sample B, made from wafer T205, has a 2DEG carrier density of 1.4 × 1015 m−2 and a
mobility of 200 m2 V−1 s−1 at Vg = 0 after brief illumination with a red light-emitting diode.
Measurements were performed in a top-loading 3He cryostat at 0.3 K using standard four-
terminal ac phase sensitive techniques.

Figure 1(a) shows the four-terminal longitudinal resistivity ρxx (B) for sample A at
Vg = 0 V, showing high quality fractional states. Plotting the carrier density versus gate voltage
in the inset shows there is a good linear fit over the measurement range −0.3 V � Vg � 0 V
with ne = (2.14 × 1015Vg + 9.12 × 1014) m−2. The electron system is well described by a
simple parallel plate capacitor model giving an estimated distance D = 0.32 µm between the
front-gate and the underlying 2DEG. The calculated D is in close agreement with the intended
as-grown depth of 0.3 µm. Although the device could be operated in the accumulation mode,
we concentrated on the case for Vg � 0 so that we could compare our results with existing
theory, as shown later. As shown in figure 1(b), at the largest applied negative gate voltage
Vg = −0.3 V we observe the fractional quantum Hall states ν = 1/3 and 2/3, demonstrating
that the composite fermion picture is valid over the whole measurement range. At liquid
helium temperatures, the distribution and density of the ionized impurities remain fixed, such
that decreasing Vg causes ne to decrease while the ionized impurity concentration ni remains
constant.

We now present the main experimental finding of our paper. Figure 2 shows the composite
fermion conductivity as a function of the carrier density for both samples at ν = 1/2. At
ν = 1/2 each composite fermion is composed of an electron bound to two magnetic flux
quanta [3], thus the density of the composite fermion system is equal to that of the electron
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Figure 1. (a) Magnetoresistivity measurements ρxx (B) at Vg = 0 V for sample A. The inset shows
the carrier density as a function of applied front-gate voltage Vg. The linear fit is discussed in the
text. (b) Magnetoresistivity measurements ρxx (B) at Vg = −0.3 V for sample A.

system. A composite fermion can also be formed at ν = 3/2. In this case, the spin-up
level is filled whereas the spin-down level is half-filled. Therefore the composite fermion
carrier density at ν = 3/2 is one-third of the electron density [10]. Note that at ν = 1/2
the composite fermion conductivity σ CF

xx is given by 1/ρxx (ν = 1/2), whereas at ν = 3/2
the composite fermion conductivity is given by 1/9 of the inverse of the measured ρxx [10].
Calculation of the exponent α from ln(σ CF

xx ) ∝ ln(ne)
α for samples A and B gives 1.02 ± 0.06

and 1.03 ± 0.01, respectively. The exponents for both samples at ν = 1/2 are therefore very
close to 1. Previously Coleridge et al [17] reported a linear increase with increasing magnetic
field of Shubnikov–de Haas peak values in the integer quantum Hall regime. However, their
results are at various filling factors for a fixed carrier density. This is in sharp contrast to our
experimental results on the composite fermion conductivity at different carrier densities.

Let us turn our attention to the case at ν = 3/2. Figure 3 shows the composite fermion
conductivity ln(σ CF

xx ) as a function of the composite fermion carrier density ln(ne/3) at ν = 3/2
for both samples. Calculation of the slopes α for both fits gives exponents for samples A and B
as 0.96 ± 0.04 and 1.04 ± 0.01, respectively. From figures 2 and 3 it is evident that the slope
of ln(σ CF

xx ) versus ln(ne) is ≈1 both at ν = 1/2 and 3/2. This experimental finding clearly
establishes a link between ν = 1/2 and 3/2, suggesting that the carrier density dependence
of the composite fermion conductivity is the same in both regimes. We also find σ CF

xx (ν =
3/2) ≈ (0.39 ± 0.02)σ CF

xx (ν = 1/2) and σ CF
xx (ν = 3/2) ≈ (0.389 ± 0.002)σ CF

xx (ν = 1/2)

for samples A and B, respectively. This is consistent with the fact that the effective disorder
within the system at ν = 3/2 is higher than that at ν = 1/2 since the electrons occupied in the
spin-up level are unable to screen the disorder [10].

Various analogies between the behaviour of the conductivity at B = 0 and ν = 1
2 have been

reported in the literature, such as on geometric resonances [8] and magnetic focusing [12]. In
figure 4 we investigate the relation between the conductivity versus carrier density by plotting
ln(σxx ) as a function of ln(ne) at zero magnetic field, and compare this with the data obtained
at ν = 1/2. At B = 0, the measured exponents α are 1.82 ± 0.02 and 1.74 ± 0.01, which
corresponds to µ ∝ n0.82±0.02

e and µ ∝ n0.74±0.01
e for samples A and B, respectively. These

results highlight that at B = 0 background impurity scattering limits the mobility in our
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Figure 2. The logarithm of composite fermion conductivity ln(σCF
xx ) as a function of the carrier

density ln(ne) at ν = 1/2 for sample A (marked by circles) and sample B (marked by squares).
The slopes of linear fits α for samples A and B are 1.02 ± 0.06 and 1.03 ± 0.01, respectively.

Figure 3. The logarithm of composite fermion conductivity ln(σCF
xx ) as a function of carrier density

ln(ne) at ν = 3/2 for sample A (marked by circles) and sample B (marked by squares). The slopes
of linear fits α for samples A and B are 0.96 ± 0.04 and 1.04 ± 0.01, respectively.

samples, in agreement with previous studies of other high quality 2D electron systems [18, 19].
However, the value of α ≈ 1.8 obtained at B = 0 is in sharp contrast to the value of α ≈ 1
obtained at ν = 1/2, indicating that whatever limits CF mobility must be a different effect.

Seminal theoretical results in this field by Halperin, Lee and Read (HLR) [4] suggest that
in the CF regime additional scattering arises from the presence of random magnetic fields due
to the inhomogeneous distribution of ionized dopants. In this work the composite fermion
resistivity at ν = 1/2 is given by ρxx = ni

ne

1
kFds

4πh̄
e2 , where kF = √

4πne and ds is the spacer
thickness. At ν = 1/2, the composite fermion conductivity is given by the inverse of ρxx , such
that

σ CF
xx

(
ν = 1

2

)
=

√
πn3/2

e ds

ni

e2

h
. (1)
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Figure 4. The logarithm of electron conductivity ln(σxx ) as a function of carrier density ln(ne)

for sample A (marked by circles) and sample B (marked by squares) at B = 0. The slopes of the
linear fits α for samples A and B are 1.82 ± 0.02 and 1.74 ± 0.01, respectively

In more recent work Mirlin, Polyakov and Wölfle (MPW) [15] have investigated the effects of
disorder in a 2D system created by the non-uniform distribution of remote ionized impurities.
They postulate that the inhomogeneous distribution of ionized dopants, of sheet density ni ,
leads to fluctuations of the effective magnetic field B(r) = (1 − 2ν(r))Bext (where ν(r) is the
local filling factor) and thereby the Chern–Simons gauge field. It is the effect of a long-ranged
random magnetic field (RMF) on CF transport that they model. There is a single parameter

β =
√

ni
2ne

which determines the strength of the random magnetic field. For non-interacting

CFs in an RMF, MPW consider that there are two limits: the weak RMF (β � 1) and the
strong RMF regimes (β � 1). In the weak RMF regime, they show that the composite fermion
conductivity at zero B̄ is given by

σ CF
xx

(
ν = 1

2

)
= kFds

4β2
=

√
πn3/2

e ds

ni

e2

h
, (2)

where kF = √
4πne and ds is the correlation radius (the spacer thickness), respectively. We

can see that equation (1) is identical to equation (2) and predicts an exponent α = 3/2 in the
relation ln(σ CF

xx ) ∝ ln(ne)
α . However, MPW note that experimentally it is difficult to reach

the weak RMF regime since the CF mean free path l is rather short (≈1 µm) and therefore the
theoretical assumption l � d does not hold. In the strong RMF regime, MPW show that

σ CF
xx

(
ν = 1

2

)
≈ kFds√

β
= 25/4πdsn

3/4
e

n1/4
i

e2

h
, (3)

where α = 3/4 in the relation ln(σ CF
xx ) ∝ ln(ne)

α is predicted. There is an extra logarithmic
factor in a detailed derivation of the formula (see equation (16) in [20]).

In our system, as with the models of HLR and MPW, we assume that at zero gate voltage
Vg = 0, ni = ne and that ne decreases with decreasing Vg while ni remains constant. For the
range of carrier densities studied we calculate β to be between 0.71 and 2.6 for sample A and
between 0.71 and 1.15 for sample B. Thus our samples are placed between the weak 1 � β

RMF regime and strong β � 1 RMF regime. Figures 5(a) and (b) show σ CF
xx as a function of

carrier density ne for samples A and B, together with the theoretical curves for both limits of the
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(a) (b)

Figure 5. (a) σCF
xx as a function of carrier density ne at ν = 1/2 for sample A. (b) σCF

xx as a function
of carrier density ne at ν = 1/2 for sample B. The solid lines represent the limits of the random
magnetic field model as discussed in the text.

model. We can see that both limits underestimate σ CF
xx for our system although the strong RMF

field regime provides a better fit. The measured α ≈ 1 from the relation ln(σ CF
xx ) ∝ ln(ne)

α

is placed between 3/2 (weak RMF regime 1 � β) and 3/4 (strong RMF regime β � 1).
However, since we have 0.71 � β � 2.6 in our system, we know we are in the crossover
region between the strong and weak RMF regimes [20] (0.2 � β � 10) and this may explain
the intermediate value of the measured exponent α.

Another possible reason as to why α lies in the intermediate regime is the following.
Assuming that all the donors are ionized (ni = ne at Vg = 0) then β � 0.71 and can no longer
be described in the weak RMF regime where 1 � β. Therefore we can only consider the strong
RMF regime which corresponds to β � 10. In this case, the corresponding electron densities
of samples A and B are 4.5 × 108 and 6.9 × 108 m−2, respectively. At such low electron
densities, the disorder within the electron system prohibits the observation of the fractional
quantum Hall effects and the composite fermion picture is no longer valid.

It is worth mentioning that the composite fermion picture is not the only understanding
of the FQHE. Extending the pioneering work of Laughlin [2], Haldane [21] and Halperin [22]
proposed a hierarchical scheme to explain the FQH states observed in experiments. In their
approach, low-lying excitations (quasi-electrons or quasi-holes) carry fractional charge. Within
this picture, the ν = 1/2 state could be regarded as charge-neutral quasi-particles at the infinite
hierarchy level subject to a finite magnetic field. It may be possible that within the hierarchy
picture, one would be able to develop a theory consistent with our experimental results of
α = 1.

3. Conclusions

In conclusion, we have measured the carrier density dependence of the composite fermion
conductivity at ν = 1/2 and 3/2 and show that the measured exponents α from the relation
ln(σ CF

xx ) ∝ ln(ne)
α are found to be ≈1 in both cases. This suggests a link between the behaviour

at ν = 3/2 and at 1/2, despite the differing amounts of effective disorder present. Our results
are in line with the enhanced scattering in the composite Fermion regime recently predicted by
Mirlin et al [15] due to the random magnetic fields arising from the non-uniform distribution
of ionized donors. The precise value of α obtained experimentally was found to be in between
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the theoretical values required for either the weak 3/2 or strong 3/4 random magnetic field
regimes recently proposed by Mirlin et al [15]. Both existing theoretical models [4, 15]
underestimate the composite fermion conductivity in our system, although the theory in the
strong random magnetic field regime [15] provides a better fit to our data. We suggest that in
order to provide full understanding of our experimental results on α = 1, further theoretical
studies are required.
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[21] Haldane F D M 1983 Phys. Rev. Lett. 51 605
[22] Halperin B I 1984 Phys. Rev. Lett. 52 1583


